G-protein-coupled receptor 91 and succinate are key contributors in neonatal postcerebral hypoxia-ischemia recovery.

نویسندگان

  • David Hamel
  • Melanie Sanchez
  • François Duhamel
  • Olivier Roy
  • Jean-Claude Honoré
  • Baraa Noueihed
  • Tianwei Zhou
  • Mathieu Nadeau-Vallée
  • Xin Hou
  • Jean-Claude Lavoie
  • Grant Mitchell
  • Orval A Mamer
  • Sylvain Chemtob
چکیده

OBJECTIVE Prompt post-hypoxia-ischemia (HI) revascularization has been suggested to improve outcome in adults and newborn subjects. Other than hypoxia-inducible factor, sensors of metabolic demand remain largely unknown. During HI, anaerobic respiration is arrested resulting in accumulation of carbohydrate metabolic intermediates. As such succinate readily increases, exerting its biological effects via a specific receptor, G-protein-coupled receptor (GPR) 91. We postulate that succinate/GPR91 enhances post-HI vascularization and reduces infarct size in a model of newborn HI brain injury. APPROACH AND RESULTS The Rice-Vannucci model of neonatal HI was used. Succinate was measured by mass spectrometry, and microvascular density was evaluated by quantification of lectin-stained cryosection. Gene expression was evaluated by real-time polymerase chain reaction. Succinate levels rapidly increased in the penumbral region of brain infarcts. GPR91 was foremost localized not only in neurons but also in astrocytes. Microvascular density increased at 96 hours after injury in wild-type animals; it was diminished in GPR91-null mice leading to an increased infarct size. Stimulation with succinate led to an increase in growth factors implicated in angiogenesis only in wild-type mice. To explain the mode of action of succinate/GPR91, we investigated the role of prostaglandin E2-prostaglandin E receptor 4, previously proposed in neural angiogenesis. Succinate-induced vascular endothelial growth factor expression was abrogated by a cyclooxygenase inhibitor and a selective prostaglandin E receptor 4 antagonist. This antagonist also abolished succinate-induced neovascularization. CONCLUSIONS We uncover a dominant metabolic sensor responsible for post-HI neurovascular adaptation, notably succinate/GPR91, acting via prostaglandin E2-prostaglandin E receptor 4 to govern expression of major angiogenic factors. We propose that pharmacological intervention targeting GPR91 could improve post-HI brain recovery.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Succinate receptors in the kidney.

The G protein-coupled succinate and α-ketoglutarate receptors are closely related to the family of P2Y purinoreceptors. Although the α-ketoglutarate receptor is almost exclusively expressed in the kidney, its function is unknown. In contrast, the succinate receptor, SUCRN1, is expressed in a variety of tissues, including blood cells, adipose tissue, liver, retina, and the kidney. Recent evidenc...

متن کامل

A Mimic of the Tumor Microenvironment on GPR30 Gene Expression in Breast Cancer

Introduction: The G-protein coupled receptor 30 (GPR30) gene is a member of the G-protein coupled receptor (GPCR) family; involved in breast, endometrial, and ovarian cancers. Many GPCR receptors that are implicated in several types of human cancers are correlated with increased cell proliferation and tumor progression; especially GPR30 gene. Methods: The breast cancer MCF-7 and MDA-MB-231 cel...

متن کامل

The Succinate Receptor as a Novel Therapeutic Target for Oxidative and Metabolic Stress-Related Conditions

The succinate receptor (also known as GPR91) is a G protein-coupled receptor that is closely related to the family of P2Y purinoreceptors. It is expressed in a variety of tissues, including blood cells, adipose tissue, the liver, retina, and kidney. In these tissues, this receptor and its ligand succinate have recently emerged as novel mediators in local stress situations, including ischemia, h...

متن کامل

Neuronal Cell Reconstruction with Umbilical Cord Blood Cells in the Brain Hypoxia-Ischemia

Background: Brain hypoxia-ischemia is a human neonatal injury that is considered a candidate for stem cell therapy. Methods: The possible therapeutic potential of human umbilical cord blood (HUCB) stem cells was evaluated in 14-day-old rats subjected to the right common carotid occlusion, a model of neonatal brain hypoxia-ischemia. Seven days after hypoxia-ischemia, rats received either saline ...

متن کامل

Systemic activation of Toll-like receptor 2 suppresses mitochondrial respiration and exacerbates hypoxic-ischemic injury in the developing brain.

Infection and inflammation are known risk factors for neonatal brain injury. Mycoplasma and Gram-positive bacteria, for which Toll-like receptor 2 (TLR2) plays a key role in recognition and inflammatory response, are among the most common pathogens in the perinatal period. Here, we report that systemic activation of TLR2 by Pam3CSK4 (P3C) increases neural tissue loss and demyelination induced b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 34 2  شماره 

صفحات  -

تاریخ انتشار 2014